
Partial Connection-Aware Topology Synthesis
for On-Chip Cascaded Crossbar Network

Minje Jun, Member, IEEE, Deumji Woo, and Eui-Young Chung, Member, IEEE

Abstract—The crossbar (also called bus matrix) solution is known as one of the most effective communication architectures for

modern high-performance embedded systems. To make it even more effective, several topology synthesis methods have been

proposed. They mostly generate a crossbar network in a cascaded fashion under the assumption that each crossbar switch is fully

connected (i.e., each input has a connection to every output). This assumption often limits optimizing the area efficiency and/or

performance of the network due to the unnecessary connections inside the crossbar switches. Some existing methods marginally

improve their synthesis results by eliminating the unnecessary connections after the synthesis step. Such postprocessing approaches

make sense since considering partially connected crossbar switches earlier in the synthesis flow can greatly increase the optimal

topology search space, thereby increasing the runtime. However, the result from these postprocessing techniques is typically far

inferior to that from the exhaustive search. In this work, we tackle such limitations of previous methods by introducing a heuristic

method based on iterative switch merging. To the best of authors’ knowledge, none of previous methods consider the partial

connection of crossbar switches in the middle of the topology synthesis. Our experimental results prove the effectiveness of the

proposed method by showing up to 30.35 percent of area saving against those methods that consider the partial connection only in a

postprocess. The results also show the superiority of the proposed method against the existing topology synthesis methods, showing

up to 49.09 percent area saving and synthesis time reduction by several orders of magnitude.

Index Terms—System-on-Chip (SoC), crossbar, topology synthesis, partial connection, on-chip interconnection network.

Ç

1 INTRODUCTION

THE advance of process technology has leveraged the
billion-transistor era, enabling huge integration of

transistors into a single chip. In this era, System-on-Chip
(SoC) is a viable solution to implement complex applica-
tions, even aiming at handheld devices. Many complex
applications available today are mostly data-intensive;
hence, the amount of communications among functional
blocks critically determines the overall system performance.
In other words, deciding which on-chip communication
architecture to use is one of the most critical design steps
affecting the design quality in terms of performance, area,
and power consumption. The design complexity of an on-
chip communication architecture also increases as the SoC
design complexity increases. For this reason, both academia
and industry have struggled for the design automation and
performance improvements of on-chip communication
architectures. The history of automatic communication
architecture design is closely tied with the history of on-
chip communication architecture itself, and we survey
related work from both perspectives.

The shared bus design is a traditional solution for an on-
chip communication architecture; hence, many previous
approaches focused on improving the shared bus architec-
ture itself, especially for its arbitration schemes. Thus,
several design methods for arbitration schemes were
proposed in [1], [2], [3]. However, the shared-bus archi-
tecture has become a performance bottleneck in many data-
intensive SoC designs due to the large amount of on-chip
data communication traffic. The multilayered bus architec-
ture, an extended version of shared bus architecture, is to
overcome the performance limitation of the shared-bus
architecture. However, this multilayered bus architecture
raised a new problem which was not considered in the
single shared-bus architecture. More precisely, the topology
of a network (i.e., how to shape a network) became a key
parameter to determine the overall performance of a
communication network. To deal with this problem,
topology synthesis methods for the multilayered bus
architecture were introduced to determine a network
topology in an automated fashion [4]. However, the
multilayered bus architecture inherently has a scalability
issue which becomes worse as the number of components in
a single chip increases. For this reason, the lifetime of these
synthesis methods is heading toward the end since their
target architecture is going to be used rarely in high-
performance SoC designs shortly.

To overcome such limitations, the bus-matrix (also called
crossbar)-based communication architecture has received a
large attention to keep pace with the rapid increase of SoC
design complexity. The crossbar architecture increases the
overall communication bandwidth such that multiple
master-slave pairs can communicate in parallel. Note that
the crossbar architecture is not new and many previous

IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 1, JANUARY 2012 73

. M. Jun and E.-Y. Chung are with the School of Electrical and Electronic
Engineering, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul
120-749, Korea. E-mail: minje.jun@dtl.yonsei.ac.kr, eychung@yonsei.ac.kr.

. D. Woo is with the Inter-University Semiconductor Research Center 306-4,
School of Electrical Engineering and Computer Science, Seoul National
University, San 56-1, Shillim-dong, Kwanak-ku, Seoul 151-744, Korea.
E-mail: nanucu@capp.snu.ac.kr.

Manuscript received 18 May 2009; revised 14 Feb. 2010; accepted 9 Sept.
2010; published online 15 Oct. 2010.
Recommended for acceptance by R. Marculescu.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2009-05-0211.
Digital Object Identifier no. 10.1109/TC.2010.211.

0018-9340/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

approaches can be found in [5], and it is known that the
crossbar architecture generally outperforms the shared bus
architecture [6], [7]. However, the adoption of the crossbar
architecture in modern SoC design has recently been
accelerated thanks to several companies who have produc-
tized crossbar-based solutions, such as AMBA Designer
(from ARM) [8] and SonicsMX (from Sonics Inc.) [9]. Even
though these vendors provide efficient crossbar switches
with a system-level performance analysis tool, they did not
mention the topology synthesis of crossbar networks in an
automated fashion.

On the other hand, several research groups in academia
focused on the topology synthesis of an on-chip crossbar
network, which was rarely studied in the past. The aim of
these approaches is to optimize important on-chip proper-
ties, such as area, power, and clock frequency, since the
increase of parallel communications significantly sacrifices
area, power, and clock frequency as the crossbar switch
becomes larger (i.e., the number of master and slave ports
increases). There have been several approaches to optimize
the crossbar for the given communication characteristics of
an application. One approach is to maximize the resource
sharing by clustering masters and slaves into several local
shared buses and connect them to a central crossbar so that
the central crossbar can be minimized [10]. Another
approach is to exploit the partial connection of a crossbar
in addition to the clustering of masters and slaves [11]. The
authors in [12], [13], and [14] improved the design further
by considering other design parameters, such as an
arbitration scheme, the sizes of buffers, memory allocation,
and dynamic voltage and frequency scaling (DVFS). These
approaches deal with the network topology problem, but
they only aim at a single, central crossbar-based network,
and therefore, they eventually face frequency limitations as
the number of masters and slaves increases.

To address this issue, the cascaded crossbar network
architecture and the corresponding topology synthesis
methods were proposed to improve the scalability issue
which is critical as the number of masters and slaves
increases [15], [16], [17], [18]. In a cascaded crossbar
network, masters and slaves can be connected to different
crossbars, and the decentralized crossbars are connected to
each other from the topological point of view. It was
demonstrated that the cascaded crossbar solution can
support larger systems than the single crossbar-based
solution from the problem scalability perspective [18].
However, the existing topology synthesis methods for the
cascaded crossbar network do not consider the partial
connections of crossbars during the synthesis phase since
the problem size becomes larger and the problem scalability
becomes severer. To avoid the synthesis time explosion, the
work in [18] considered the partial connections of crossbars
at a postprocessing step after the topology of a subnetwork
is determined. It obviously improves the design quality
(such as area, delay, and power consumption) by eliminat-
ing unused paths inside crossbars, but such postprocessing
does not allow the opportunity to appreciate better
topological choices which may be explored if partial
connection is considered in conjunction with the topology
determination. Irregular topology synthesis methods in the
Network-on-Chip (NoC) did not consider the partial
connection, either [19], [20], [21].

In this paper, we tackle such major drawback of previous
topology synthesis methods for the cascaded on-chip
crossbar network. More precisely, we propose a topology
synthesis method for crossbar-based on-chip communica-
tion network, where partially connected crossbar switches
are considered during the topology determination process
for maximizing its area efficiency and/or performance.
Also, our method is based on a greedy heuristic technique
called iterative switch merging which efficiently explores
the optimal topology search space drastically enlarged by
the consideration of partially connected crossbar switches.
Hence, this feature prevents the runtime explosion issue
which is very important as the design complexity of SoCs
increases.

In Sections 2 and 3, we provide a motivating example of
our method and the problem definition to be tackled in this
work, respectively. In Section 4, we address the details of
the proposed method. Finally, we demonstrate the experi-
mental results to show the effectiveness of our work in
Section 5 followed by a conclusion in Section 6.

2 MOTIVATION

In most of previous methods [15], [16], a fully connected
crossbar switch is used as a basic unit of a communication
resource for building a cascaded crossbar network. How-
ever, these approaches waste the area by keeping unneces-
sary connections inside the crossbar switches.

In [18], the authors proposed to eliminate unnecessary
connections in each crossbar switch at a postprocessing
step, but it only shows marginal improvement in area
efficiency since the topology itself is not altered. For this
reason, it is necessary to consider the partially connected
crossbar switches during synthesis phase to achieve higher
area efficiency.

Fig. 1 clearly compares the area efficiency of the
aforementioned three approaches. In this motivating ex-
ample, we used one of our test cases under 90 nm process
technology. Also, the clock frequency constraint was set by
the maximum bandwidth on a link times the channel width.
Fig. 1a is the topology for the test case synthesized by fully
connected crossbar based topology synthesis. Fig. 1b is the
topology synthesis result for the same example when we
additionally consider the postprocessing step for partial
connection. Since the postprocessing eliminates the unne-
cessary inner connections of each crossbar, the area is surely
reduced, but the topology is unchanged. From Figs. 1a and
1b, it is shown that the postprocessing for partial connection
improves the area efficiency by 20.53 percent. Finally, by
considering the partial connection of crossbars simulta-
neously when determining the topology (we call it in-
process partial crossbar), we can find a better solution as
shown in Fig. 1c which was obtained by our method to be
discussed later in detail. In this case, the area efficiency
compared to Fig. 1a is improved by 44.84 percent which is
about two times than that achieved in Fig. 1b.

This motivating example clearly shows why we need to
consider in-process partial crossbar which is even capable
of alternating the topology of the network for better area
efficiency. However, in-process partial crossbar obviously
expands the design space, and thus, increases the synthesis
time. Therefore, we need to find a runtime-efficient
synthesis algorithm to search the enlarged search space.

74 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 1, JANUARY 2012

In the sequel, we call the topology synthesis with only
fully connected crossbars no-partial crossbar for brevity.
Similarly, we call the topology synthesis which considers
partial connections at a postprocessing step postprocess
partial crossbar in contrast to in-process partial crossbar.
We formally define the problem of in-process partial
crossbar in Section 3 and describe the solution that we
propose in Section 4.

3 PROBLEM DEFINITION

3.1 Definitions

We propose an application-specific on-chip network topol-
ogy synthesis method. It takes a communication trace graph
as input and delivers as output a synthesized topology
satisfying given constraints.

Definition 1. Communication Trace Graph CTG ¼
GðVM; VS; EÞ is a directed graph, where vm 2 VM and vs 2
VS are, respectively, a master node and a slave node, and
em;s 2 E is the edge between vm and vs. The edge em;s has two
attributes, wðem;sÞ and dðem;sÞ, representing the required
bandwidth and the latency constraints of the edge at the hop-
count level, respectively.

In shared memory architectures, the memories are
mapped to slave nodes while the initiators, such as CPUs
and DMAs, are mapped to master nodes. In peer-to-peer
communication architectures, each processing element can
be mapped to either master node, slave node, or both
depending on whether it is a producer, consumer, or both of
the communication.

Definition 2. Topology T ðX;LÞ represents how cores and
crossbars are connected, where x 2 X denotes a crossbar and
each l 2 L a physical link connecting a core and a crossbar or a
crossbar and another crossbar. A link l 2 L is called loose if
the latency constraints of the edges which are assigned to the
link are greater than 1.1 Otherwise, the link is called tight. Ck
denotes the cost (such as area and power consumption, or
weighted sum of them) of crossbar xk 2 X.

Definition 3. M is a 2D matrix in which each element mi;j is the
merge cost, namely, the design-cost reduction when we merge
xi and xj. Suppose that we merge xi with xj. mi;j is positive if
the merging of xi and xj reduces the design cost (i.e., improves

the design) and negative if it increases the design cost. Also,
mi;j is a real value and its magnitude corresponds to the
amount of cost reduction or penalty depending on its polarity.
M is naturally a symmetric diagonal matrix (i.e., mi;j ¼ mj;i

and mi;i ¼ 0) since merging xi to xj is same to merging xj to
xi from the topological point of view. Also, the diagonal
elements of M are all zeros since merging a crossbar to itself
does not make sense. Therefore, we only compute the elements
in the upper half of M. The detail of computing mi;j will be
introduced in Section 4.3.2.

3.2 Problem Definition

In this paper, we concern the problem of synthesizing the
topology T ðX;LÞ that satisfies all the conditions given in
the CTG and that yields the best cost. The cost can be the
clock frequency, the area, or the power consumption of the
network. The design space includes the partial connection
of each crossbar.

To avoid any potential deadlock and to focus on the
network topology synthesis itself, we assume 1) a single
path between a master and its slave and 2) a single protocol,
a single channel width, and a single clock frequency of the
network. That is, the bridges for protocols, addresses/data
widths, and clock frequencies are not considered in the
synthesis process, and the latency is defined using the hop-
count concept. Lastly, we assume that pipeline stages are
inserted only between the crossbars. These assumptions are
valid in most practical cases due to the following reasons:

. The first assumption: In the application-specific on-
chip network topology synthesis, it has been
demonstrated that multiple paths marginally im-
prove design quality improvements for the 10
benchmarks used in [22], even when the overhead
of deadlock-free routing and in-order packet deliv-
ery was not considered. It is also notable that the
results are obtained with considering only the fully
connected switching components. In our approach,
every unused path is removed from switches, and
therefore, the chance of the multipath routing being
beneficial is even more reduced.

. The second assumption: In this study, we are
focusing on the backbone on-chip network into
which hundreds of IP blocks are integrated. In such
a large system, an IP can be a local system that
communicates with other IPs through the backbone
network interface, which is in charge of the compat-
ibility of the protocol, address/data width, and

JUN ET AL.: PARTIAL CONNECTION-AWARE TOPOLOGY SYNTHESIS FOR ON-CHIP CASCADED CROSSBAR NETWORK 75

Fig. 1. The advantage of in-process consideration of partial connection of crossbar. (“M” : master, “S” : slave, “X” : crossbar.) (a) Fully connected
crossbar, Area: 0:979ðmm2Þ. (b) Postprocess consideration of partial crossbar, Area: 0:778ðmm2Þ. (c) In-process consideration of partial crossbar,
Area: 0:540ðmm2Þ.

1. Its physical meaning is that one or more crossbars can be inserted
between the two terminals of the link.

frequency used. Therefore, we assume that the roles
of bridges are played by the network interfaces,
which are not included in the backbone network.

. The third assumption: We assume that the pipeline
stage can be inserted only between two crossbars,
just as in [15], [16], [18]. That is, we do not consider
modifying internal pipeline configuration of cross-
bars, and concentrate on finding an optimal topol-
ogy composed of the given crossbars.

Under the above assumptions, the synthesis problem we
try to address can be defined as follows:

Given CTG GðVM; VS; EÞ and the crossbar library, find
the topology T ðX;LÞ that minimizes the defined cost such
that the bandwidth and latency constraints are satisfied.

4 PROPOSED TOPOLOGY SYNTHESIS

4.1 Overview of the Proposed Method

The proposed topology synthesis flow is shown in Fig. 2
and an example of applying this flow is given in Fig. 3. The
synthesis process consists of two phases: 1) initial topology
generation, and 2) iterative crossbar merging.

The first phase is to generate the topology composed of
crossbars that are as small as possible, while satisfying the
constraints. This phase starts with allocating a dedicated
crossbar to each master node and slave node and then
establishes links according to the connection information
given in the input CTG (Fig. 3a). Next, new crossbars are
iteratively inserted to the links while maintaining the
latency and bandwidth constraints (Fig. 3b).

In the second phase, the crossbars generated from the
first phase are iteratively merged until no more merge can
improve the quality of the solution. For each iteration, the
crossbar pair that can reduce cost the most is merged, and
according to the demanded connections in the CTG,
unnecessary connections in each crossbar are removed,
while considering the partial connections for each crossbar
(Figs. 3c, 3d, and 3e). Unlike our approach, the technique by
[18] considers applying partial connections only after the
topology (or subtopology) is determined. In order to find

the most cost-reducing crossbar pair, it is needed to obtain
the merge cost of every existing crossbar pair for each
iteration. It is obviously too inefficient to recalculate the
merge cost of every crossbar pair whenever a merge occurs.
Thus, we reevaluate only those crossbar pairs that have
been affected by a merge. More details on this technique
will be presented in Section 4.3.

In our crossbar network design, we adopt the floorplan
consideration methodology where the floorplanner is
invoked whenever the topology is updated. However, since
the coconsideration of the floorplan and topology synthesis
is not our main contribution, we take the floorplanning as
an optional step in order to concentrate on the network
topology synthesis.

4.2 Initial Topology Generation

The purpose of this phase is to obtain a topology with the
smallest crossbars while satisfying all the constraints given
in the input CTG, to prepare the iterative merging phases.

76 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 1, JANUARY 2012

Fig. 2. Proposed topology synthesis flow.

Fig. 3. Example of topology synthesis process. (“M” : master, “S” : slave, “X” : crossbar.) (a) Connect each master and slave to a dedicated crossbar.
(b) Establish links with as small crossbar as possible. (c) Merge crossbars. (d) Remove redundant links. (e) Iterate crossbar merging and redundant
link removal.

The algorithm for this phase is shown in Fig. 4. This phase
first initializes the network by connecting each master and
slave to a dedicated crossbar (line 1-6), and making the links
between crossbars to establish the connections given by the
CTG (line 7-13). In this step, if dðem;sÞ is 1 (i.e., only one hop is
allowed between master vm and slave vs), we merge the two
crossbars to which the master vm and slave vs are connected
so as to meet the latency constraint. Next, in lines 14-20, the
crossbars are split into smaller ones iteratively. The process
starts from selecting a crossbar which has more than two
loose links and splits the crossbars into smaller ones by the
following procedure:

. Step 1: At the selected crossbar node xi, partition the
loose links into two groups. If xi has one or more
tight links as well as loose links, all the loose links
are partitioned into the same group.

. Step 2: Each group is assigned a dedicated crossbar
so that xi now becomes a 1� 2 (or 2� 1) crossbar if
xi has no tight link or has only one tight link. The
tight link is remained the same since no crossbar can
be inserted between its two terminals. The newly
generated crossbars are 1�k (or k�1), where k is the
number of loose links assigned to the corresponding
group (line 17).

. Step 3: The newly generated crossbars are added to
the crossbar set X (line 18), and the process is
repeated until no crossbar is left which can be split.

The partitioning of the loose links in Step 1 is done such
that the total bandwidth in each group is as close to each
other as possible in order to balance the loads in the
network. The splitting procedure is iteratively performed

on the crossbars in descending order to the degree of the
crossbars (i.e., the number of in/out links of the crossbars).
The rationale behind the order is that the crossbar having
more loose links will probably have more chances to be split
into larger number of smaller crossbars.

4.3 Iterative Crossbar Merging

4.3.1 Overall Procedure

This phase improves the initial topology generated in the
first phase by iteratively merging the crossbars in the
topology, and the algorithm is presented in Fig. 5. In the
algorithm, the set P is used to keep positive merge costs
(i.e., those mi;j’s that can improve the solution).

The algorithm starts with initializing P to null. Then, the
algorithm calculates the merge costmi;j’s of all crossbar pairs
by using the function calculate_merge_cost (line 3). To
calculate the merge cost of each crossbar pair, we first
examine whether or not the merge of these two switches
yields multiple paths in order to hold the assumption given
in Section 3.2 (i.e., the single-path assumption). If the merge
holds the single-path assumption and mi;j is positive (i.e.,
merging xi and xj yields a feasible and better topology than
the current one), mi;j is added to P (line 2-7) as a merging
candidate. If mi;j is positive but produces multiple paths, we
identify the appropriate links (or edges) to be eliminated for
the single-path assumption and the link numbers are
recorded into the attribute of mi;j called removal_links, a
vector denoted as ri;j for mi;j. If ri;j is not null, then mi;j is
added to P , since the merge can hold the assumption by
eliminating the links in ri;j. We describe more details in
Section 4.3.2.

In the while loop starting at line 8, the largest mi;j in P
that yields the best quality improvement is selected, and the

JUN ET AL.: PARTIAL CONNECTION-AWARE TOPOLOGY SYNTHESIS FOR ON-CHIP CASCADED CROSSBAR NETWORK 77

Fig. 4. Algorithm for initial topology generation.

Fig. 5. Iterative crossbar merging algorithm.

function merge_switch_pair improves the topology by
merging xi and xj into xn. If ri;j is not null, the
corresponding links are removed for the single-path
assumption, which will the discussed in Section 4.3.3.

After the merge, we need to update the merge costs
affected by xn for the next iteration (or next merge). In the
worst case, all the merge costs should be recalculated with a
large computation overhead. To mitigate this issue, we
perform the function selective_reevaluation which
selects mi;j’s whose values are likely to be affected by the
merge. The selected merge costs are denoted as a set S. The
function selective_reevaluation also provides a way
to trade off the synthesis quality and the computation time
by a parameter called selection level L (line 11), which will
be introduced in detail in Section 4.3.4.

Then, the function calculate_merge_cost recalcu-
lates the value of each element in S, and P is updated based
on the new merge cost. This iteration is terminated when P
becomes null. Finally, the algorithm returns the optimized
topology.

4.3.2 Calculating Merge Cost

This function takes two crossbars as its inputs and outputs
their merge cost. By its definition, the merge cost of xi and
xj represents the cost reduction (in our objective, the
network area) incurred by merging two crossbars. Unfortu-
nately, it cannot be obtained by simply comparing the area
sum of two crossbars with the area of the crossbar to be
created by the merge. It is because other crossbars can also
be modified by the merge due to the following reason: if
merging xi and xj produces multiple paths in the resulting
topology, some links should be removed to hold the single-
path assumption. It is also necessary to remove the
corresponding ports (and their internal connections) of
some crossbars connected to the links since they are no
longer useful due to the link removal.

There are two necessary and sufficient conditions to
detect the multipaths when we merge xi and xj: 1) there
exists at least a common ancestor or a successor of xi and xj
since xn, the new crossbar created by merging xi and xj,
also becomes a common endpoint to the paths from the
common ancestor or to the common successor. 2) At least
one ancestor (successor) of xi is connected to the successor
(ancestor) of xj. In this case, the ancestor can reach the
successor through the path which already exists and also
through the path including xn.

To handle the multipath issue, we need to trace the
topology created by merging two crossbars. However, we
do not know which merge provides the largest merge cost
at this time. For this reason, we virtually merge two
crossbars in calculate_merge_cost, meaning that the
crossbars and links to be modified are only marked with
their attributes rather than actually merged. The actual
merge is performed by the function merge_switch_pair

in the next step. In the remainder of Section 4.3.2, “merge”
or “removal” means setting the attributes of the corre-
sponding crossbars or links.

For convenience, we call two common endpoints of a
multipath the start node and the end node, respectively. That
is, the node placed in the arrow tail is the start node and the
node placed in the arrow head is the end node in a directed
topology graph.

There are several options to eliminate multipaths.
However, we limit the possible choices to the neighbors of
the start node and the end node. In other words, we do not
consider the links of the intermediate nodes forming the
paths in order to reduce the computation overhead. First,
we examine at the start node whether the sum of the traffics
on all the fan-out links does not exceed the maximum link
capacity.2 If not, we select a link whose capacity is the
largest and update its bandwidth attribute called bi;j by the
sum of the traffics. In other words, the selected single link
delivers all the traffics loaded on the start node. If the traffic
sum exceeds the maximum link capacity, we examine at the
end node in a similar manner. If the sum of traffics on all its
fan-in links does not exceed its maximum input link
capacity, we treat the input links of the end node as we
do for the start node. Otherwise, we cancel the merge since
the merge of these two crossbars incurs unallowable traffic
congestions at the start node and/or end node.

Note that we do not eliminate the links in this step since
a virtual merge is performed. Instead, the identified link
numbers are stored in ri;j for later use if the two crossbars
are actually merged.

The following example shows how we handle the
multiple paths in this step.

Example 1. In Fig. 6a, the common ancestor of xi and xj is x3

and their merge yields two paths—x3 ! x4 ! xn and

78 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 1, JANUARY 2012

2. The maximum link capacity is the channel width multiplied by the
clock frequency.

Fig. 6. Multipath manipulation in calculate_merge_cost. (a) Before virtual merge. (b) After virtual merge.

x3 ! x17 ! xn, which correspond to the first multipath
condition. We examine the fan-out links of x3 to see
whether the total amount of traffic of its fan-out links
does not exceed x3’s fan-out link capacity. It is also
examined the effect when the links between x3 and x4

(for convenience, l3;4) and between x3 and x17 (for
convenience, l3;17) are merged. They can be merged with
redirecting the traffic through l3;4 to l3;17 and removing
l3;4 or vice versa. Between the two cases, the one which is
better for the load balancing is selected. For example,
suppose that l3;4, l3;17, l4;n, and l17;n carry the bandwidth
of 100, 50, 200, and 300 MB/s, respectively. If we remove
l3;4, the traffic through it will be rerouted to l3;17, and
thus, l17;n will carry 400 MB/s while the bandwidth
through l4;n will be reduced to 100 MB/s. On the other
hand, if l3;17 is removed, l4;n and l17;n will carry the same
amount of bandwidth, 250 MB/s. Therefore, l3;17 is
finally selected for the elimination through the virtual
merge, as shown in Fig. 6b. The selected link number is
added to ri;j to used when these two crossbars are
actually merged.

The second multipath condition can be demonstrated
by x4 and x22 in Fig. 6a, where x4 (an ancestor of xi) has a
path to x22 (an successor of xj). By virtually merging xi
and xj, we find two paths—x4 ! xn ! x21 ! x22 and
x4 ! x22. Similarly, the link from x4 to x22 is selected for
elimination and the link number is also added to ri;j.
Note that x22 will disappear when their actual merge
occurs since it becomes a trivial 1� 1 crossbar due to the
link elimination.

Afterward, a task is required to ensure that the switches on
the remaining path have appropriate internal connections to
replace the paths broken by the virtual link elimination. The
following example shows how to handle the task:

Example 2. Obviously, there are two paths from xstart to xend
in Fig. 7a. Suppose that the link between xstart and x3 is
virtually eliminated as shown in Fig. 7b. In that case, all
the traffics from xstart to xend should be delivered through
x1 and x2; hence, the a new connections has to be added
in each switch to construct a path from x1 and x2. On the
other hand, the internal connections of the virtually
removed link should be eliminated in x3 since they are
no longer useful due to the link removal.

Note that we neither create nor delete the internal
connections since it is the result of virtual merge. Instead,
we record the internal connections to be created or deleted
to a vectored attributes, cxi , and the element of both
attributes is represented as <w;m; s>, where m and s are
the master port number and slave port number of xi,
respectively. Also, w is a boolean variable such that the
connection from m to s should be created if w ¼ 1.
Otherwise, the connection should be deleted.

As shown in Examples 1 and 2, the merge of xi and xj
modifies other crossbars and their changes should be
considered in the merge cost of xi and xj. For this purpose,
we define a set Xi;j

NEW . Its elements are the crossbars which
are connected the links in ri;j. In Example 1,Xi;j

NEW ¼ fx3; x4;

x17; x22g, while Xi;j
NEW ¼ fxstart; x1; x2; x3g in Example 2.

Also, note that such manipulation naturally directs the
crossbars to have partial connections without unnecessary
internal connections.

After resolving the multipath issue, the merge cost of xi
and xj is calculated as follows (if not resolved, the merge
cost is set to a negative value):

mi;j ¼ Ci þ Cj � Cn þ
X

xk2Xði;jÞNEW

ðCk � C0kÞ; ð1Þ

where Cn is the cost of the resulting crossbar of the merge,
and C0k is the modified area of xk due to the multipath
removal. Note that the partial connection of each crossbar is
taken into account in the merge cost calculation, and the
details of obtaining the area and delay of a partial crossbar
will be presented in Section 4.5. In addition, we set the
merge cost mi;j to negative infinity if the merging results in
a infeasible topology: 1) if a merging results in such a large
crossbar that its maximum clock frequency cannot support
the required bandwidth, and/or 2) if one or more latency
constraints are violated after the multipath removal, we set
the merge cost to negative infinity so that the topology
evolves only to the feasible direction.

4.3.3 Merging Switches

The function merge_switch_pair(xi; xj) performs the
merge of the two input switches and updates the topology
T . For example, suppose that mi;j is the largest merge cost in
Fig. 6a, and xi and xj are therefore selected for merge at line 9
in Fig. 5. Then, the merge createsxn followed by removing the
links recorded in ri;j. The newly created xn is added to Xnew.
After this process, the topology changes to a better one
without violating given constraints and assumptions.

Prior to merge, another important task of this function is
performed, which is called switch classification. It is a
preprocessing to set up a data structure for the next step
performed by the function selective_reevaluation,
where some portion of merge costs is selected for their
reevaluation in the next iteration, which can greatly reduce
the computing time compared to the exhaustive reevaluation.

Switch classification is applied to each crossbar given as
input of this function and then classifies the switches into
four classes.

First, it identifies the ancestors of each input crossbar and
defines a set of ancestors for each of them. We denote the set

JUN ET AL.: PARTIAL CONNECTION-AWARE TOPOLOGY SYNTHESIS FOR ON-CHIP CASCADED CROSSBAR NETWORK 79

Fig. 7. Internal connection manipulation for multipath removal. (a) Before
virtual link removal. (b) After virtual link removal.

as Xi
U for xi and Xj

U for xj, as depicted in Fig. 6a. In general,
the set of ancestors of switch xi is defined as follows:

. Xi
U � X is a set of the crossbars which have a path

to xi.

Based on the above definition, we compute Xi
U by

performing the back-trace from xi to sources (masters).
Also, we back-trace from xj to its sources to find its

ancestors, in Fig. 6a.
Similarly, we can identify the successors of each input

crossbar by performing forward-tracing from the crossbar

to its sinks (slaves). We also define the set of successors of a
switch xi as follows:

. Xi
D � X is a set of the crossbars which have a path

from xi.

In addition, we define two more classes for xi as follows:

. Xi
US � X is a set of the crossbars which have a path

from x 2 Xn
U , but are not on the path to xi.

. Xi
DS � X is a set of the crossbars which has a path to

x 2 Xn
D, but are not on the path from xi

We can similarly define Xj
U , Xj

D, Xj
US , and Xj

DS for xj. For

simplicity in explanation, we use the four classes with

respect to xi, but note that the same principle holds for the

four classes defined for xj.

The switch classification is based on how much it will be

affected when xi is merged to other node. It is obvious that

Xi
U and Xi

D will be affected more than the others since the

merge effect of xi can be propagated through the paths.

Furthermore, these two classes may include common

ancestors and/or common successors which may yield the

modification of the topology for multiple path elimination.

The other two classes, Xi
US and Xi

DS may also be affected by

the modified switches in Xi
U and/or Xi

D. However, these

two classes will be less affected since there are lower

possibilities to have paths from/to the modified switches

compared to the former case. Fig. 6a shows the classification

of both xi and xj, and the classification is still maintained

after the merge of xi and xj as shown in Fig. 6b.
Note that there is another switch class XNEW which is

already discussed in Section 4.3.2.

4.3.4 Selective Reevaluation

Thekeyfeatureof this function,selective reevaluationðLÞ,
is how to find those mi;j’s that have been largely affected by

a merging action, avoiding unnecessary computation of
unchanged merge costs. The exact method is to examine the

merge cost of every switch pair, but it is not desirable from
the runtime perspective. The other extreme approach is to

examine the merge costs of the switches paired with an
element in XNEW . This approach may miss many of affected

merge costs, which degrades the quality of synthesis result.
For this reason, we propose a method which is capable of
trading off the quality of synthesis result and the search

time by using the classes obtained from switch classification.
The trade-off can be achieved by defining four merge

cost groups called reevaluation groups. Reevaluation groups

are numbered from 1 to 4. The lower the number is, the size

of the group is smaller, but its elements (merge costs) have
higher chances to be changed.

Using the notations of classes introduced in Section 4.3.3,
we can formally define reevaluation groups, when we merge
two crossbars xi and xj in X into xn.

. Reevaluation group 1: mp;q, where

- xp 2 XNEW for all xq 2 X.
. Reevaluation group 2: mp;q, where

- xp 2 Xi
U and xq 2 Xj

U [X
j
US [X

j
DS .

- xp 2 Xj
U and xq 2 Xi

U [Xi
US [Xi

DS .
. Reevaluation group 3: mp;q, where

- xp 2 Xi
D and xq 2 Xj

D [X
j
US [X

j
DS .

- xp 2 Xj
D and xq 2 Xi

D [Xi
US [Xi

DS .
. Reevaluation group 4: mp;q, where

- xp 2 Xi
US and xq 2 Xj

DS .
- xp 2 Xj

US and xq 2 Xi
DS .

As far as reevaluation group 2 is concerned, we ignore Xj
D

when we consider xq. This is because xq in Xj
D with the

switches in Xi
U will incur the second multipath necessary

and sufficient condition given in Section 4.3.2, which is
unhelpful in the cascaded crossbar network [16]. The same
principle is applied to reevaluation group 3.

Based on the reevaluation groups, we implement a method
to trade off the accuracy (synthesis result) and runtime at
four different levels, depending upon the aggressiveness of
selection. We expect that a lower level implementation
provides higher speed-ups but detects smaller portion of
the affected merge costs, whereas a higher level implemen-
tation detects more affected merge costs but is more time-
consuming. The selection levels, L, are defined as follows:

. Level 1: Reevaluate only reevaluation group 1.

. Level 2: Reevaluate reevaluation groups 1, 2, and 3.

. Level 3: Reevaluate reevaluation groups 1, 2, 3, and 4.

. Level 4: Reevaluate every merge cost.

Note that as a smaller portion of reevaluated merge costs
is considered (i.e., a lower reevaluation level is used), a larger
portion of merge costs is likely to be out of date (or
inaccurate), thus producing a suboptimal merge. On the
other hand, as the fraction of reevaluated merge costs
increase (i.e., using higher reevaluation level), we can achieve
better merges at each iteration at the cost of additional
computation time. As will be shown in Section 5, we found
that Level 3 can trade-off accuracy and runtime most
effectively.

4.4 Complexity Analysis of Iterative Merging

Previous approaches avoided the in-process crossbar
topology synthesis without performing any quantitative
analysis of the algorithm complexity. In our work, we
provide a complexity analysis of our method to appreciate
whether the in-process crossbar topology synthesis is
worthwhile from the runtime perspective.

As mentioned in Fig. 4, the initial topology from our
method has N crossbars. For a given initial topology, there
are total N

2

� �
possible cases, if we select two switches for

merging out of N switches. For each merging case, we

80 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 1, JANUARY 2012

compute the merging cost as shown in line 1 through line 7
in Fig. 5. The loop from line 8 to line 19 performs iterative
merging and the merging strategy is determined by L,
selection level parameter.

In this algorithm, the lower bound of its complexity can
be found when L ¼ 1, whereas its upper bound is when
L ¼ 4 as analyzed in the following. The analysis starts with
calculating the bound of the loop iteration. The loop is
iterated at most N � 1 since each iteration merges only two
switches. However, in terms of complexity analysis, the best
case is that no positive merge cost is in P for initial topology
so the synthesis process is finished without merge,
regardless of what the selection level is. In this case, the
complexity is just OðNÞ and it is not meaningful in showing
the lower bound of our method.

On the other hand, in terms of upper bound, all the
merge costs are reevaluated at each iteration when L ¼ 4;
hence, the number of reevaluation at the kth iteration is
obviously N�k

2

� �
, and therefore, the number of reevaluations

is at most
PN�2

k¼1
N�k

2

� �
¼ ðN3 � 3N2 þ 5NÞ=6. In other

words, the worst-case algorithm complexity when L ¼ 4 is
OðN3Þ. The worst-case algorithm complexity of other
selection levels lies under the OðN3Þ. Note that if the in-
process partial crossbar is taken into account, the computa-
tional burden obtained for a single crossbar, discussed in
Section 4.3.2, should be applied to all the crossbars for each
iteration, raising the worst-case complexity to OðN3Þ.

4.5 Partial Crossbar Characterization

For the full crossbars, we adopt the characterization
approach in [16], [18], [15], where the RTL codes of
crossbars of all concerned sizes are generated and synthe-
sized. This approach is acceptable for the full crossbar
characterization since it requires a couple of hundreds of
synthesis which can be easily parallelized and done in a day
with a high-performance machine. However, this character-
ization approach is not adequate for the partial crossbars
since there are plenty of partial connection configurations
for an m� n crossbar. Instead, we model the area, delay,
and power of a partial crossbar using the synthesis results
of the full crossbars and the input/output ports.

As shown in Fig. 8, a crossbar is composed of input ports,
output ports, and their connections. Any configuration of
full or partial crossbar can be assembled with a set of input
and output ports and corresponding connections. Since no
logic block is required between the input ports and output
ports but only nets exist, the ports must be the dominant
factor for area and power. Therefore, we model the area and
power consumption of a partial crossbar as the sum of area
and power, respectively, consumed by the ports. That is, the
area of a partial crossbar is calculated as follow:

APC ¼
X

i

Aport
i ; ð2Þ

where APC is the area of the partial crossbar, and Aport is the
area of its port, either input or output.

We use the similar approach for power consumption,
that is, the power consumption of a partial crossbar is
obtained by summing the power consumed by the ports.
For the power consumption of a port, Pport, we adopt the
model used in [17], which is as follow:

Pport
i ¼ leaki þ �i � fi þ �i � �i � fi; ð3Þ

where leaki, fi, and �i are leakage power (Watt), clock
frequency (Hz), and transition activity (transitions/sec) of
the port. The second term of the right-hand side of (3) is the
traffic-independent but clock-dependent dynamic power
(e.g., clock network), and the third is the traffic- and clock-
dependent dynamic power (e.g., register). � and � have the
units of Watt/Mhz and J/transition, respectively, and are
measured for every size of input and output ports. Then,
the power consumption of a partial crossbar, PPC , is
obtained as follow:

PPC ¼
X

i

P port
i : ð4Þ

Lastly, we model the delay of a partial crossbar as the
delay of the full crossbar which has the same critical path
delay. For example, suppose a 6� 4 partial crossbar in
which the critical path is the path between the master port
having fan-out of three (i.e., the number of slave ports to
which it is connected is three) and the slave port having fan-
in of four (i.e., the number of master ports to which it is
connected is four). Then, we model the delay of the partial
crossbar as the delay of 4� 3 full crossbar.3

To examine the accuracy of our partial crossbar model, we
measured the characteristics of fifteen 5� 5 partial crossbars
and compared them with the values obtained by our model.
Fig. 9 shows the absolute percentile errors of our models for
area, delay, and power consumption. The 15 partial crossbars
Partial_1 to Partial_15 have 10-24 buses inside. The result
shows that the error is within eight percent for all the metrics.
Specifically, the maximum errors for area, delay, and power
consumption are 0.14, 7.95, and 6.55 percent, respectively.
Based on this result, we believe that the proposed models for
partial crossbar characterization are accurate enough to be

JUN ET AL.: PARTIAL CONNECTION-AWARE TOPOLOGY SYNTHESIS FOR ON-CHIP CASCADED CROSSBAR NETWORK 81

3. Although the clock frequency can be set differently for each path
technically, single clock frequency is usually assumed for a switch [10], [15],
[16], [18], [19], [20], [21].

Fig. 8. 2� 2 crossbar architecture.

used in our topology synthesis method. By using the models,
we can avoid time-consuming synthesis of tens of thousands
of partial crossbars, and only need to perform tens of
synthesis for ports with various fan-outs and fan-ins.

5 EXPERIMENT

5.1 Settings and Overview of Experiments

We tested our method for nine benchmark applications,
where five applications are real-world examples and the
others are synthetic ones. The real-world examples are an
MPEG4 decoder (G2) [26], a multimedia SoC (G3) [16], a
mobile multimedia player (G4) [17], an mobile application
processer (G5) [17], and a game SoC (G7) [17]. The synthetic
benchmarks are generated based on the real-world ones. G1
is derived by removing two masters and two memories
from the CTG of G2. G1 represents a relatively small system
where all the masters share the only memory for their data
communications. G6, G8, and G9 are generated by combin-
ing two or more real-world examples. They are used to
evaluate the effectiveness and scalability of the proposed
method in larger systems, which we may face in a near
future. In combining two or more CTGs to make synthetic
benchmarks G6, G7, and G9, the cores having similar
functionality in different CTGs are mapped to the same core
in the newly generated CTG and the corresponding edges
are linked to the core.

The characteristics of the benchmarks is summarized in
Table 1, where jVM j, jVSj, jEj, and Width are the numbers of
masters, slaves, edges, and the address/data width of the
network interface, respectively.

For crossbars and ports, we generated RTL codes of
AMBA3 AXI crossbar and port for each size, synthesized
them with Synopsys Design Compiler with 90 nm process
library, and the prelayout area, delay, and power information
are used. We used 0.19 ps/�m [24] and 0.6 fJ/bit/�m [27] for
the wire delay and power calculation, respectively. The
topology synthesis tool was implemented in C++.4

We first conducted a set of experiments to analyze the
impact of the parameter and the option in our methods.
More precisely, we measured the impact of the parameter

selection level which trades off the runtime and solution
quality. In addition, we addressed the wire delay effect on
the network topology by enabling the floorplanning step in
the flow shown in Fig. 2 so that the physical validity of
every candidate topology can be examined. In these
experiments, we use the network area as the cost of the
synthesis for simplicity in the comparison.

In the second set of experiments, we investigated the
impact of in-process partial crossbar in terms of area and
power saving over no partial crossbar and postprocess
partial crossbar in Section 5.4. Also, we quantitatively
analyzed the role of selective reevaluation step (also
referred to as level 3) in in-process partial crossbar in the
same section.

In the final set of experiments, we compared in Section 5.5
our in-process partial crossbar with the existing methods,
namely, the traffic group encoding-based approach [15] (for
short TGE), the MILP-based technique [16] (for short MILP),
and MILP-based heuristic method [18] (for short MIRO)5 in
terms of area efficiency and runtime scalability.

5.2 Sensitivity Analysis

In our synthesis process, the selection level parameter plays
a significant role for trading off efficiency and accuracy.
Here, we examine the area and synthesis-time trade-off for
the four selection levels introduced in Section 4.3. For all
four levels, we compare the synthesis time, the selection
accuracy, and the area of the resulting topology. The
selection accuracy is defined as the ratio of the number of
reevaluated merge costs to that of the merge costs actually
affected by iterative merging.

Fig. 10 shows the result by averaging the comparison
criteria over all benchmarks. In case of area, the values are
normalized to the results from using level 1. On the other
hand, the selection accuracy and synthesis time are normal-
ized to the results from using level 4. The left y-axis is for
the synthesis time and the selection accuracy values, while
the right y-axis is for the area values. In order to concentrate
on the topology synthesis, the floorplanning step in Fig. 2 is
disabled in this experiment, and the effect of the floor-
planning step will be shown in Section 5.3. As the selection
level increases, the selection accuracy increases, and there-
fore, better crossbar pairs are merged at each iteration,
yielding a smaller area as expected. However, the area

82 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 1, JANUARY 2012

Fig. 9. Partial crossbar model accuracy.

TABLE 1
Benchmark Description

4. More detailed information for the crossbar switches and the bench-
marks used in the experiment can be found at http://dtl.yonsei.ac.kr/doc/
International_Journal/tc_partialaware_supplement.html.

5. In fact, we extended MILP and MIRO from their original works such
that they can handle the read and write traffic separately, just as the
proposed method and TGE do.

efficiency at level 4 is slightly better (1.79 percent) than that
at level 3, while the synthesis time is increased by almost
twice (1:79�). In fact, for most cases, level 3 yields a
satisfactorily good solution in reasonable time.

Fig. 11 compares the empirical complexity of levels 1, 2,
3, and 4 over the benchmarks. The x- and y-axes represent
the numbers of the crossbars in the initial topology and the
computation time including in-process partial crossbar,
respectively. The nine points correspond to G1 through G9,
and N (dotted line), N2 (solid line), and N3 (dashed line) are
given for the sake of convenience in comparison. The result
demonstrates that the empirical complexity is much lower
than that for all practical cases. The complexity of level 1
and level 4 lie between OðNÞ to OðN3Þ.

5.3 Considering Floorplan in Topology Synthesis

Next, we compare the synthesis results with and without
floorplanning step. Whenever the topology is changed by
merging, the floorplanner Parquet [23] is invoked to check if
the topology can be implemented on the die without any
unacceptably long wire. More specifically, the floorplanner
checks if every wire is within the length that the signals can be
transmitted in one clock cycle determined by the topology,
and if not, the topology is discarded. The effect of the
floorplanning consideration in the resulting topology is
shown Fig. 12a. The numbers of the crossbars used are
annotated above the corresponding bars. With the floor-
planning enabled, the network topology can be substantially
different from that without floorplanning, showing at most
6:13� larger area (G7). The deviation is mainly due to wire

delay between the IPs and crossbars. As the iterative merging
progresses, the number of crossbars decreases, making the
relative distances of the IPs and crossbars increase. In fact,
more crossbars are needed at most 11:50� (for G9) and 5:96�
on average when the floorplan is considered.

Enabling the floorplanning step increases the synthesis
time, as can be easily expected. In our experiment, the
computation time of the floorplanning dominates that of the
entire topology synthesis procedure, as shown in Fig. 12b.
This inefficiency comes mainly from the lack of integrity of
the topology synthesis and the floorplanning; their design
spaces and exploration methods are poorly integrated such
that the floorplanning should be done from the bottom for
every topology even though the only change is the merging
of two crossbars. Even though the topology synthesis with
floorplanning is completed at most within 48 minutes (for
G9) and it is a reasonable amount of time considering the
problem size, the entire synthesis time can be reduced if
more efficient floorplanner is used, such as that in [25].

5.4 Performance Analysis of In-Process Partial
Crossbar Approach

To appreciate the impact of in-process partial crossbar, we
compared the three methods—no partial crossbar, postpro-

cess partial crossbar, and in-process partial crossbar. For
fair comparison, the same synthesis algorithm was used for
all these methods. The only difference among these methods
is when the partial crossbar switch is considered. Also, we
used the area as the comparison metric for brevity. We used
level 3 as the selection level for all three methods, and the
floorplanning was turned off in this experiment in order to
concentrate on the effect of partial connection consideration.

The normalized area comparison results are shown in
Fig. 13, where, for simplicity, we denote these methods as
“No_Partial,” “Post_Partial,” “In_Partial,” respectively.
Also, the number above each bar represents how many
crossbar switches were used in each synthesized topology.
As shown in Fig. 13, postprocess partial crossbar achieves
area saving up to 30.31 percent (for G2) and 8.71 percent on
average from no partial crossbar. Since the removal of the
unused internal buses is performed after the topology is
determined, the number of crossbars used is the same as that
of no partial crossbar. In-process partial crossbar, which is
the proposed method, shows further reduction from
postprocess partial crossbar. Quantitatively, the area is
further saved up to 30.35 percent (for G4) and 14.01 percent
on average by in-process partial crossbar.

JUN ET AL.: PARTIAL CONNECTION-AWARE TOPOLOGY SYNTHESIS FOR ON-CHIP CASCADED CROSSBAR NETWORK 83

Fig. 11. Computation complexity.

Fig. 12. The effect of considering floorplan. (a) Effect of the floorplanning
step on the network topology. (b) Synthesis time fraction.

Fig. 10. Sensitivity on the selection level.

Such savings are mainly thanks to the partial connection-
aware topology synthesis since the resulting topology must
have been discarded if we had considered only fully
connected crossbar switches during the topology determi-
nation. In addition, it is worth noting that the results for G1
are the same for the three methods. It is because G1 has only
one memory to which all the traffics are destined, and
therefore, the resulting topology must be in shape of a
single-rooted tree. In fact, the resulting topology of G1 has a
shape of single-rooted tree composed of six 2� 1 crossbars.

We additionally conducted an experiment to show that
the effect of the cost function to the final solution. Fig. 14
shows the normalized power consumption of the resulting
topology when the synthesis objectives are area minimiza-
tion (i.e., the cost of a crossbar Ck is the area of the crossbar,
denoted as obj-area) and power minimization (i.e., Ck is the
power consumption of the crossbar, denoted as obj-power).
When the objective is power minimization, the power
consumption can be saved by up to 54.17 percent (for G6)
and 14.74 percent on average compared to when the
objective is area minimization.

Next, we measured the impact of the selective reevalua-
tion step on in-process partial crossbar. As mentioned in
Section 4, this step can greatly reduce the synthesis time by
pruning unnecessary cost-reduction evaluations, but its side
effect is the degradation of area efficiency.

Fig. 15 shows the runtime variation of in-process partial
crossbar with various selection levels used. In the legend,
we denote the method with level 4 as “+L4,” while the

method with level 3 is denoted as “+L3.” The runtime is
normalized to the no partial crossbar approach without the
selective reevaluation step (i.e., with level 4), which is the
first bar of each test case in the figure. As expected from
Section 2, in-process partial crossbar at level 4 drastically
increases the synthesis time by up to 4:12� (in case of G8),
and the runtime overhead tends to become larger as the
problem size increases due to the enlarged search space.
However, when in-process partial crossbar is set to level 3,
the synthesis time is greatly reduced by up to 91.70 percent
(in case of G8) and 51.59 percent on average against the in-
process partial crossbar at level 4. More interestingly, the
in-process partial crossbar at level 3 shows faster synthesis
time even than no partial crossbar at level 4 from runtime
perspectives in many of the test cases. This may be an
unexpected result since no partial crossbar deals with
smaller search space by ignoring partially connected cross-
bars. The result can be justified by understanding the basic
principle of our method. It inherently evaluates the cost
reduction of all possible crossbar pairs to find the best
merging candidates in an iterative manner, and the
evaluation hence dominates the overall runtime, which is
greatly reduced by the evaluation pruning done at the
selective reevaluation step.

5.5 Comparison with Existing Methods

To appreciate the overall impact of our method, we
compared it with three previous methods—TGE, MILP,
and MIRO. In this comparison, the selection level of our in-
process partial crossbar method was set to level 3. The
floorplanning was also turned off in this experiment and
the area is used as the cost since TGE and MILP are not
considering the floorplanning and the power consumption.
For all the methods, the time-out deadline is set to 48 hours.

The results are shown in Table 2. At the first glance,
MIRO and the proposed method outperform the others
thanks to consideration of partial connection. Compared to
MIRO, the proposed method finds the same solutions for
G1 to G5, in which the single partial crossbar is the best
solution. However, for larger problems, G6-G9, the pro-
posed method shows better area saving than MIRO, except
for G9 where MIRO fails to find a feasible solution. It is
mostly thanks to the fact that MIRO applies the partial
connection after the topology of the subnetwork is
determined, while our method considers it in the calcula-
tion of all the merge costs.

84 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 1, JANUARY 2012

Fig. 14. The effect of the synthesis objective.

Fig. 15. The computation time variation of in-process partial crossbar
with various selection levels.

Fig. 13. The area comparison of different partial connection approaches
(with L3).

Another benefit of our method is much faster synthesis
time compared to the counter parts. TGE failed to find a
feasible solution for the largest problem due to sticking at the
local optimum during the simulated annealing. The synthesis
time of MILP shot up as the problem size grows and reached
the time-out deadline without finding any feasible solution
for G6-G9. MIRO showed better solution quality and shorter
synthesis time than TGE and MILP for G1-G8, but failed to
find a solution for G9 even though the time-out deadline was
not reached. It shows the apparent limitation of MIRO on the
scalability; MIRO compresses the input communication
graph by merging the master or slave nodes, and the merge
makes the bandwidth and the latency constrains more and
more tight since the bandwidth is accumulated and the
latency constraint is taken as the minimum.

Unlike the other methods, our method found the best
solutions for all the test cases in much shorter time.
Quantitatively speaking, the area is saved by up to 49.09,
28.96, and 29.49 percent compared to TGE, MILP, and
MIRO, respectively, even with the failed cases excluded.
The synthesis time reduction is more than 400�, 85;000�,
and 200�, on average, compared to TGE, MILP, and MIRO,
respectively.

6 CONCLUSION

In this paper, we have proposed a synthesis method for
crossbar-based networks, in which the partial connection of
a crossbar is considered in the middle of the topology
determination step. In our synthesis process, which is based
on repetitive merging of crossbars, the proposed selective
reevaluation feature enables more efficient design space
exploration. The experimental result we presented proves
that considering the partial connection of crossbars in a
cascaded crossbar network results in a great synergy effect,
improving the design quality by more than 30 percent
compared with the postprocess consideration. Our method
achieves impressive quality and scalability improvements
over existing topology synthesis methods, such as MILP,
TGE, and MIRO, showing up to 29.49 percent area saving
and more than 200� synthesis time reduction compared to
MIRO which outperforms the other two methods.

ACKNOWLEDGMENTS

This work was supported in part by Technology Innovation
Program (Industrial Strategic technology development pro-
gram, KI002168, Development of Configurable Device & SW
Environment) funded by the Ministry of Knowledge Econ-
omy (MKE, Korea), by the Basic Science Research Program
through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education, Science and Technol-
ogy (2010-0025423), and by the IDEC (IC Design Education
Center). D. Woo was with the School of Electrical and
Electronic Engineering, Yonsei University, 134 Sinchon-
dong, Seodaemun-gu, Seoul 120-749, Korea.

REFERENCES

[1] M. Jun, K. Bang, H.J. Lee, N. Chang, and E.Y. Chung, “Slack-Based
Bus Arbitration Scheme for Soft Real-Time Constrained Em-
bedded Systems,” Proc. Asia and South Pacific Design Automation
Conf. (ASPDAC ’07), pp. 159-164, Jan. 2007.

[2] K. Lahiri, A. Raghunathan, and G. Lakshminarayana, “LOTTERY-
BUS: A New High-Performance Communication Architecture for
System-On-Chip Designs,” Proc. Ann. Design Automation Conf.
(DAC ’01), pp. 15-20, June 2001.

[3] B.C. Lin, G.W. Lee, J.D. Huang, and J.Y. Jou, “A Precise
Bandwidth Control Arbitration Algorithm for Hard Real-Time
SoC Buses,” Proc. Asia and South Pacific Design Automation Conf.
(ASPDAC ’07), pp. 165-170, Jan. 2007.

[4] M. Drinic, D. Kirovski, S. Megerian, and M. Potkonjak, “Latency-
Guided On-Chip Bus Network Design,” IEEE Trans. Computer-
Aided Design of Integrated Circuits and Systems, vol. 25, no. 12,
pp. 2663-2673, Dec. 2006.

[5] W. Dally and B. Towels, Principles and Practices of Interconnection
Networks. Morgan Kaufmann Publishers Inc., 2003.

[6] M. Loghi, F. Angiolini, D. Bertozzi, and L. Benini, “Analyzing On-
Chip Communication in a MPSoC Environment,” Proc. Conf.
Design, Automation and Test in Europe (DATE ’04), pp. 752-757, Feb.
2004.

[7] K.K. Ryu, E. Shin, and V.J. Mooney, “A Comparison of Five
Different Multiprocessor SoC Bus Architectures,” Proc. Euromicro
Symp. Digital Systems Design ’01, pp. 202-209, Sept. 2001.

[8] AMBA Designer User Guides, http://www.arm.com/products/
solutions/AMBA_Designer.html, 2010.

[9] SonicsMX SMART Interconnect Solution, http://www.sonicsinc.
com/sonicsMX.htm, 2010.

[10] S. Murali, L. Benini, and G. De Micheli, “An Application-Specific
Design Methodology for On-Chip Crossbar Generation,” IEEE
Trans. Computer-Aided Design of Integrated Circuits and Systems,
vol. 26, no. 7, pp. 1283-1296, July. 2007.

[11] S. Murali and G. De Micheli, “An Application-Specific Design
Methodology for STbus Crossbar Generation,” Proc. Conf. Design,
Automation and Test in Europe (DATE ’04), pp. 1176-1181, Mar.
2005.

[12] S. Pasricha, N. Dutt, and M. Ben-Romdhane, “Constraint-Driven
Bus Matrix Synthesis for MPSoC,” Proc. Asia and South Pacific
Design Automation Conf. (ASPDAC ’06), pp. 30-35, Jan. 2006.

JUN ET AL.: PARTIAL CONNECTION-AWARE TOPOLOGY SYNTHESIS FOR ON-CHIP CASCADED CROSSBAR NETWORK 85

TABLE 2
The Comparison of the Synthesis Quality and Time of TGE, MILP, MIRO, and the Proposed Method

[13] S. Pasricha and N. Dutt, “COSMECA: Application Specific Co-
Synthesis of Memory and Communication Architectures for
MPSoC,” Proc. Conf. Design, Automation and Test in Europe
(DATE ’06), pp. 700-705, Mar. 2006.

[14] S. Pasricha, N. Dutt, and F.J. Kurdahi, “Dynamically Reconfigur-
able On-Chip Communication Architectures for Multi Use-Case
Chip Multiprocessor Applications,” Proc. Asia and South Pacific
Design Automation Conf. (ASPDAC ’09), pp. 25-30, Feb. 2009.

[15] J. Yoo, S. Yoo, and K. Choi, “Communication Architecture
Synthesis of Cascaded Bus Matrix,” Proc. Asia and South Pacific
Design Automation Conf. (ASPDAC ’07), pp. 171-177, Jan. 2007.

[16] M. Jun, S. Yoo, and E.Y. Chung, “Mixed Integer Linear
Programming-Based Optimal Topology Synthesis of Cascaded
Crossbar Switches,” Proc. Asia and South Pacific Design Automation
Conf. (ASPDAC ’08), pp. 583-588, Jan. 2008.

[17] J. Yoo, S. Yoo, and K. Choi, “Topology/Floorplan/Pipeline Co-
Design of Cascaded Crossbar Bus,” IEEE Trans. Very Large Scale
Integration Systems, vol. 17, no. 8, pp. 1034-1047, Aug. 2009.

[18] M. Jun, S. Yoo, and E.Y. Chung, “Topology Synthesis of Cascaded
Crossbar Switches,” IEEE Trans. Computers-Aided Design of
Integrated Circuits and Systems, vol. 28, no. 6, pp. 926-930, June
2009.

[19] S. Murali, P. Meloni, F. Angiolini, D. Atienza, S. Carta, L. Benini,
G. De Micheli, and L. Raffo, “Designing Application-Specific
Networks on Chips with Floorplan Information,” Proc. Asia and
South Pacific Design Automation Conf. (ASPDAC ’06), pp. 355-362,
Jan. 2006.

[20] K. Srinivasan, K.S. Chatha, and G. Konjevod, “Linear-Program-
ming-Based Techniques for Synthesis of Network-On-Chip
Architectures,” IEEE Trans. Very Large Scale Integration Syntems,
vol. 14, no. 4, pp. 407-420, Apr. 2006.

[21] K. Srinivasan, K.S. Chatha, and G. Konjevod, “An Automated
Technique for Topology and Route Generation of Application
Specific On-Chip Interconnection Networks,” Proc. IEEE/ACM
Int’l Conf. Computer-Aided Design (ICCAD ’05), pp. 231-237, Nov.
2005.

[22] K.S. Chatha, K. Srinivasan, and G. Konjevod, “Automated
Techniques for Synthesis of Application-Specific Network-On-
Chip Architectures,” IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, vol. 27, no. 8, pp. 1425-1438, Aug.
2008.

[23] S.N. Adya and I.L. Markov, “Fixed-Outline Floorplanning:
Enabling Hierarchical Design,” IEEE Trans. Very Large Scale
Integration Systems, vol. 11, no. 6, pp. 1120-1135, Dec. 2003.

[24] L. Carloni, A.B. Kahng, S. Muddu, A. Pinto, K. Samadi, and P.
Shama, “Interconnect Modeling for Improved System-Level De-
sign Optimization,” Proc. Asia and South Pacific Design Automation
Conf. (ASPDAC ’08), pp. 258-264, 2008.

[25] J.Z. Yan and C. Chu, “DeFer: Deferred Decision Making Enabled
Fixed-Outline Floorplanner,” Proc. Ann. Design Automation Conf.
(DAC ’08), pp. 167-172, 2008.

[26] S. Murali and G. De Micheli, “SUNMAP: A Tool for Automatic
Topology Selection and Generation for NoCs,” Proc. Ann. Design
Automation Conf. (DAC ’04), pp. 914-919, June 2004.

[27] S. Yan and B. Lin, “Application-Specific Network-On-Chip
Architecture Synthesis Based on Set Partitions and Steiner Trees,”
Proc. Asia and South Pacific Design Automation Conf. (ASPDAC ’08),
pp. 277-282, 2008.

Minje Jun (M ’08) received the BS and MS
degrees in electrical and electronic engineering
in 2006 and 2008, respectively, from the Yonsei
University, Seoul, Korea, where he is currently
working toward the PhD degree in electrical and
electronic engineering. His research interests
include System-on-Chip architecture and Net-
work-on-Chip with the special emphasis on their
design automation. He is a member of the IEEE.

Deumji Woo received the BS degree in elec-
trical and electronic engineering from the Yonsei
University, Seoul, Korea, in 2009, and he is
currently working toward the MS degree in the
School of Electrical Engineering and Computer
Science, Seoul National University, Korea. His
research interests include computer and Sys-
tem-on-Chip architecture, Network-on-Chip, and
design methodology for large-scale multiproces-
sor system-on-chip (MPSoC) and on-chip bus
architectures.

Eui-Young Chung (SM ’99-M ’06) received the
BS and MS degrees in electronics and computer
engineering from the Korea University, Seoul,
Korea, in 1988 and 1990, respectively, and the
PhD degree in electrical engineering from the
Stanford University, California, in 2002. From
1990 to 2005, he was a principal engineer with
SoC R&D Center, Samsung Electronics, Yongin,
Korea. He is currently an associate professor in
the School of Electrical and Electronic Engineer-

ing, Yonsei University, Seoul. His research interests include system
architecture and VLSI design, including all aspects of computer-aided
design with the special emphasis on low-power applications and flash
memory applications. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

86 IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO. 1, JANUARY 2012

